基于極限學習機的機器人示教學習研究

文:歐勇盛 | 2017年第一期 (0) | (0)

 機器人的智能化經過多年的發展,已越來越貼近人類,使其成為具有人類的學習能力、運動能力、執行能力、感知能力、認知能力等的新型智能機器人是人類追求的目標,其中示教學習是研究機器人學習能力的重要分支之一,是智能型仿人機器人發展和應用的關鍵。因此,對于示教學習的研究一直是學術界研究的熱點。

 近年來,為達到機器人能準確、快速的完成人類導師對其示教的動作,出現了許多示教方法,如日本Kondo公司生產的KHR系列機器人,采用直接輸入機器人各個關節角度的方式進行示教;美國戴沃爾提出利用伺服技術對機器人的關節進行控制,人手對機器人進行動作示教,機器人記錄示教過程中的示教數據并進行再現;曹其新等人則提出了利用激光深度傳感器在獲得人體各關節轉角的三維坐標后,將其輸入到控制器中進行示教,并采用基于速度的有選擇均值濾波法對控制數據進行處理,以上示教方法在人類對機器人進行示教研究的進程中,做出了重要的貢獻,起到了很大的推動作用,但機器人完成示教動作的準確性、重現的速度及傳感器數據抖動方面扔有待提高。

 在系統控制策略方面,有許多算法被相繼應用于機器人示教領域,如高斯混合模型、強化學習、試錯學習等。以上方法在用于系統控制時,雖然表現出了良好的系統穩定性及有效性,但也存在各自的缺點,如訓練時間長、生成的軌跡連續性不好等。極限學習機ELM(ExtremeLearningMachine)是針對上述算法的缺陷設計的一種新型算法,其具有泛化學習能力強、訓練速度快等方面的優點。

 綜上所述,為了使機器人示教系統具有很好的自適應性及魯棒性,即機器人能按照示教動作,在不同起始點上仍按照示教的軌跡回到終點位置,使得機器人具有一定的智能性及自學習能力,并針對上述算法的缺點,本文選用教學研究型機器人NAO為實驗平臺,采用扳動其手臂關節的方式進行示教,同時構建了以極限學習機為核心算法的機器人示教系統,并通過實驗驗證了該算法能使系統具有一定的泛化能力。

控制過程概述

 機器人完成點到點的示教動作是研究仿人機器人動作編輯的重要組成部分。故本文將以機器人完成從起始點到目標點的動作為基礎動作,以極短的時間間隔作為采樣的頻率,每次采集時,將NAO右手臂上的四個關節角的值采集到,然后對數據進行預處理,之后進行回歸訓練,利用訓練好的模型對機器人的控制器進行控制,使得機器人重現示教動作更加準確。(如圖1)

實驗平臺簡介

 法國AldebaranRobotics公司研制的小型仿人機器人NAO,高度為58厘米,全身共有25個自由度,具有動覺、視覺、觸覺、感知、認知等能力,其擁有完善的數字處理器及電機制動器、豐富的傳感器系統、多種交流設備、特有的操作系統NAOqi、完備的配套編程平臺,具備Wi-Fi連接及以太網兩種通信方式,因其具備良好的二次開發的優勢,被廣泛作為教學、科研等方面的研究工具。

示教學習算法

 由于傳感器測量時存在累積誤差、噪聲、穩定性等問題,會使測量到的數據不夠準確,故使用離散時間的卡爾曼濾波KF(KalmanFilter)來對NAO手臂關節上的傳感器輸出數據進行融合,使得機器人手臂姿態的準確性最優,有利于提高機器人示教學習的準確性。根據上一時刻關節傳感器采集到的測量值對下一時刻的測量值進行估計,然后與下一時刻傳感器的測量值進行數據融合,即更正下一時刻的測量值,以便使數據更準確。

 根據機器人實際運動狀態,將運動系統定義為一階常微分方程:

實驗

 HCS(LearningHumanbyDemonstration)是由Y.OuandY.Xu[12]提出的用于在非線性動態系統中,利用支持向量基為模型學習動態系統的參數,以保證動作能夠按照示教動作達到并停止到目標點的一種統計學優化算法。為驗證ELM算法具有在上述約束條件下收斂、訓練速度快、準確率高等特點,首先將ELM與SEDS在采用相同的樣本數據為前提下,將兩者的仿真實驗結果進行比較。樣本數據來源為采集的多種人類實際手寫體數據庫。以數據庫中的Cshape、Spoon、Line、Trapezoid等數據為例,實驗對比圖如圖3所示。

 在實驗平臺上做實際的示教實驗,首先由操作者扳動機器人NAO的手臂末端執行器,使其做出要求的避障取物動作,在示教的同時,NAO中的遠程控制器,記錄下每間隔100ms傳感器、關節角等的值,當需要機器人重現示教動作時,動態系統從存儲器中取出經ELM算法訓練出的控制信息,將指令信號傳給驅動機構,使驅動機構準確、快速的完成要求的動作。ELM中,隱藏層節點個數為50,輸入層與隱藏層權值均為隨機向量,以處理后機器人手臂末端執行器的空間位置數據作為極限學習機的輸入,以手臂末端的速度作為其輸出。

 人類導師示教過程及示教曲線圖如圖4所示。

 圖5為機器人從不同的起始點進行避障示教及重現的軌跡圖,黑色點集代表動作起始點,藍色點集代表動作的終止點,紅色曲線為樣本數據組成的示教曲線,藍色曲線為機器人重現示教動作的曲線圖。

結論

 本文結合ELM學習算法的訓練速度快、所需調節的參數少等優點,對機器人進行示教學習,彌補了以往仿人機器人示教學習時學習速度慢,重現示教動作精確度不高等方面的不足,實踐效果表明,采用該方法有很好的抗干擾能力、很好的泛化能力,同時也避免了維度災難。采用常微分方程將基于ELM的動態系統描述為非線性動態系統,并給出了該系統在目標點達到局部穩定的約束條件,利用李雅普諾夫穩定性定理對其穩定性給予了理論支撐,為今后仿人機器人學習更多復雜的示教動作奠定基礎。

 

雜志訂閱

填寫郵件地址,訂閱精彩資訊:
单双中特